¹³C NMR SPECTRA OF FUNCTIONALLY SUBSTITUTED **3-CHLORODERIVATIVES OF CHOLESTEROL AND -SITOSTEROL**

N. V. Kovganko, Zh. N. Kashkan, and E. V. Borisov UDC 547.92

C NMR spectra were studied and signals were assigned for C atoms of steroids 1-7. ¹³

Key words: sterols, 3β -chlorosterols, 13 C NMR spectra.

We have previously studied the ¹³C NMR spectra of several steroids oxidized in rings *A* and *B*, being derivatives of cholesterol (**1a**), β -sitosterol (**1b**), and stigmasterol. In the present article, which is a continuation of our work, we present data for ¹³C NMR spectra of 2-7. These compounds are 3 β -chloroderivatives of sterols 1a and b. We synthesized them by replacing the 3 β -hydroxyls in **1a** and **b** by Cl and then oxidizing the resulting chloroderivatives **2a** and **b**. These compounds are interesting becuase some of them are typical insecticides for larvae of the Colorado beetle [3-6]. Further searches for active insecticides among 3ß-chloroderivatives of sterols of more complicated structure depend on reliable methods for proving their structures. In our opinion, 13 C NMR spectroscopy is one such method.

a: R=H; **b:** R=Et

¹³C NMR chemical shifts of steroids **2b-7** are listed in Table 1. Analogous data for cholesterol (1a) [1, 2], β -sitosterol (**1b**) [1, 2], and 3 β -chlorocholest-5-ene (**2a**) [7] are given for comparison. That fact that replacing the 3 β -hydroxyl by Cl does not significantly change the chemical shifts of C atoms in rings *B*, *C*, and *D* and the side chains is interesting. In the spectra of **2a** and **b**, the chemical shifts for the C atoms of ring *A* only are different relative to their position in the spectra of the starting **1a** and **b**. Replacing the 3 β -hydroxyl in cholesterol (**1a**) and β -sitosterol (**1b**) by Cl to give **2a** and **b** shifts the signal for C-3 in the ¹³C NMR spectrum to strong field by 11.5-12.4 ppm mainly owing to the α -effect of the halogen. Signals for C-2 in the

Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 220141, Belarus, Minsk, ul. akad. Kuprevicha, 5/2. Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 474-477, November-December, 2000. Original article submitted December 25, 2000.

Atom	1a	1 _b	2a[7]	2 _b	3	$\overline{\mathbf{4}}$	5	6a	6b	$\overline{7}$
$C-1$	37.2	37.3	39.3	39.2	$39.3^{\rm a}$	38.8	39.8	38.1	38.1	38.5
$C-2$	31.6	31.6	33.5	33.4	27.1	27.9	26.2	32.8	32.8	33.0
$C-3$	71.5	71.8	59.1	60.3	65.6	68.1	63.5	57.8	57.7	58.7
$C-4$	42.2	42.3	43.6	43.4	77.1	77.5	76.8	42.6	42.7	29.7
$C-5$	140.8	140.8	141.0	140.8	141.5	138.8	76.7	163.9	163.8	152.7
$C-6$	121.7	121.7	122.4	122.5	129.5	131.5	60.9	126.4	126.2	114.4
$C-7$	31.8	32.1	31.9	31.8	32.1	32.0	32.6	201.8	201.9	157.6
$C-8$	31.8	32.1	31.9	31.7	31.3	31.6	29.8	45.5	45.4	38.0
$C-9$	50.0	50.2	50.3	50.1	50.6	50.2	52.1	49.8	49.8	49.6
$C-10$	37.0	36.5	36.4	36.4	36.0	35.8	34.9	38.1	38.1	38.3
$C-11$	21.1	21.1	21.1	21.0	20.9	21.3	21.3	21.2	21.1	20.6
$C-12$	39.7	39.8	39.9	39.7	39.7^{a}	39.4	39.7	38.6	38.6	43.1
$C-13$	42.2	42.3	42.4	42.3	42.5	42.3	42.2	42.6	43.1	42.8
$C-14$	56.0	56.8	56.8	56.7	57.0	56.7	56.3	49.8	49.9	49.9
$C-15$	24.2	24.3	24.3	24.3	24.3	24.2	24.3	26.2	26.1	27.1
$C-16$	27.9	28.3	28.3	28.3	28.2	27.9	28.2	28.4	28.5	28.3
$C-17$	56.1	56.1	56.3	56.1	56.2	56.1	56.2	54.8	54.7	54.6
$C-18$	11.8	12.0	12.0	12.0	12.1	11.8	12.0	12.1	12.0	12.2
$C-19$	19.4	19.1	19.3	19.3	20.5	20.3	17.9	17.2	17.2	17.8
$C-20$	35.7	36.2	35.8	36.2	36.2	35.8	36.1	35.6	36.1	36.1
$C-21$	18.7	18.8	18.9	18.8	18.8	18.7	18.8	18.8	18.9	19.1
$C-22$	36.0	34.0	36.3	34.0	34.0	36.2	34.0	36.2	33.9	33.9
$C-23$	23.8	26.2	24.0	26.1	26.2	23.8	26.2	23.8	26.3	26.1
$C-24$	39.5	45.2	39.6	45.8	46.0	39.5	45.9	39.3	45.8	45.8
$C-25$	28.2	29.2	28.0	29.1	29.2	28.2	29.3	27.9	29.1	29.1
$C-26$	22.4	18.9	22.7	19.1	19.1	22.5	19.1	22.5	19.0	19.1
$C-27$	22.7	19.1	23.0	19.9	19.8	22.8	19.8	22.7	19.8	19.8
$C-28$		23.1		23.1	23.2		23.2		23.0	23.0
$C-29$		11.9		11.9	11.9		11.7		12.0	12.0
CH ₃ CO						20.4				
CH ₃ CO						169.9				

TABLE 1. Chemical Shifts of C Atoms in $1-7$ (δ , ppm)

 8 Signals may be interchanged. Solvents: CHCl₃ (1a, 1b, 4, 5, 6a); CCl₄ (2a); CDCl₃ (2b, 3, 6b, 7).

spectra of **2a** and **b** are shifted to weak field by 1.8-1.9 ppm compared with their positions in the spectra of **1a** and **b** owing to the β -effect of the Cl. Signals for C-4 are analogously shifted to weak field by 1.1-1.4 ppm in the spectra of 2a and **b** compared with their positions in the spectra of **1a** and **b**. The shift to weak field by 1.9-2.3 ppm for C-1 that is observed in the spectra of **2a** and **b** compared with its position in the spectra of cholesterol and β -sitosterol can be explained by the γ -effect of the Cl.

The ¹³C NMR spectrum of 3 β -chloro-4 β -hydroxysteroid **3** can be interpreted more conveniently by comparing it with that of 3β -chlorosteroid **2b**. According to Table 1, introducing an additional hydroxyl into **2b** shifts the signal for C-4 to weak field by 33.5 ppm owing to the α -effect. Simultaneously the 4 β -hydroxyl shifts the signal for C-4 to weak field compared with its position in the spectrum of 2b by 6.5 ppm owing to the β -effect. The signal for C-2 in the spectrum of 3 is observed at δ = 27.1 ppm. Such a shift to strong field by 6.4 ppm (compared with the spectrum of 2b) is caused by the γ -effect of the 4 β hydroxyl. Of the remaining signals in the spectrum of **3**, the signal of the vinyl C-6 is interesting because it shifts to weak field by 7.0 ppm compared with its position in the spectrum of $2b$. This is caused by the allyl 4β -hydroxyl in 3.

The chemical shifts of the C atoms in rings A and B in the ¹³C NMR spectra of 3 and 4 differ insignificantly. This can be explained by both the different electronegativities of the hydroxy and acetoxy groups (acetylation effect) and the conformations of rings *A* in **3** and **4**. The latter is explained by the different volumes of the substituents on C-4, which experience a 1,3-diaxial interaction with the angular 19-methyl.

Epoxide 5 was prepared by epoxidation of allyl alcohol 3. ¹³C NMR spectra of 5 characteristically have C-5 and C-6 signals at 76.7 and 60.9 ppm, respectively. The same position is common for 5,6-epoxides of steroids [7]. Table 1 also shows

 $\mathcal{L}=\frac{1}{2}$

that replacing the 5-double bond by epoxy shifts the signals for C-7 and C-9 to weak field by 0.5 and 1.5 ppm, respectively, and the signal for C-8 to strong field by 2.5 ppm. However, the chemical shifts for C atoms of ring *A* change insignificantly.

Allyl oxidation by chromic acid at C-7 to give $-\Delta^5$ -7-ketones 6a and b is yet another possible chemical transformation of **2a** and **b**. The presence in these molecules of the 7-ketone conjugated to the 5-double bond causes several characteristic changes in the ¹³C NMR spectra. This occurs primarily for the position of the signal for C-7, which is observed at weak field at $\delta = 201.8-201.9$ ppm. Signals for C-5 and C-6 appear at 163.8-163.9 ppm and 126.2-126.4 ppm, respectively. This indicates that a double bond conjugated to the 7-ketone is present at the 5- and 6-positions. Furthermore, the presence of the ketone in the position α to C-8 shifts its signal to weak field by \sim 13.6 ppm compared with this signal in the spectra of the starting 2a and **b**. It is also interesting that signals for the quaternary C-10 in the spectra of **6a** and **b** shift to weak field by 1.7 ppm compared with their position in the spectra of **2a** and **b**. It should also be noted that the chemical shifts of ring *B* atoms in the spectra of **6a** and **b** are very similar to the corresponding characteristics in the spectrum of (24R)-3β-hydroxystigmast-5-en-7-one, which we studied earlier [2].

The signals for C-4 through C-8 undergo a characteristic shift to strong field compared with their positions in the spectrum of the starting compound in the 13 C NMR spectrum of oxime 7, which was synthesized by the usual method from ketone **6b**.

Thus, ¹³C NMR spectroscopy can be used effectively to establish the structures of various 3 β -chlorosterols.

EXPERIMENTAL

Melting points were determined on a Kofler block. IR spectra were recorded in KBr pellets on a UR-20 instrument. Mass spectra were obtained on a Varian MAT-311 instrument with ionizing-electron energy 70 eV.

¹H NMR spectra of 5% solutions in CDCl₃ were obtained on a Bruker WM-360 NMR spectrometer at working frequency 360 MHz. Chemical shifts are given relative to TMS internal standard.

¹³C NMR spectra of 1a and b, 3-5, and 6a were recorded on a Bruker WM-360 NMR spectrometer at 90.56 MHz and 0.2 M. Chemical shifts are determined relative to TMS internal standard. The PGD $(^{13}C(^{1}H)$, GD (^{13}C) , and in certain instances CW (off-resonance) regimes were used. The pulse duration was 30 µsec (30 $^{\circ}$), relaxation delay 1 sec, accumulation time 0.32 sec, number of scans for ¹³C_{¹H} 100, for ¹³C, 1000. The accumulation was carried out at 16 Kb; transformation, 32 Kb of memory. The filter had an exponent with $LB = 3 Hz$.

¹³C NMR spectra of 2b, 6b, and 7 were recorded on a Bruker AC-200 spectrometer at 50.32 MHz and 40-50 mg of compound in 0.5 mL of solution. Chemical shifts are given relative to TMS internal standard. The parameters are the same for ${}^{13}C_1{}^{1}H$ and ${}^{13}C$ except for the suppression regime. The spectral width is 12,195 Hz, relaxation delay 5 sec, recording time 0.67 sec, pulse duration 3.5 µsec (70°), digital resolution 1.5 Hz, filter exponent (LB = 1.5 Hz), number of scans 100 for ${}^{13}C[{^1}H]$ and 400 for 13 C. The CPD regime was used for suppression of proton coupling.

3 β **-Chlorocholest-5-ene** (2a) and (24R)-chlorostigmast-5-ene (2b) were prepared from cholesterol (1a) and β sitosterol (**1b**) by the literature method [8].

(24R)-3-Chlorostigmast-5-en-4-ol (3) was synthesized by allylic oxidation of **2b** by selenium dioxide in dioxane by the literature method [9].

3-Chlorocholest-5-en-4-ol acetate (4) was synthesized by the literature method [4].

 $(24R)$ -3 β **-Chloro-5,6** β **-epoxy-5** β **-stigmastan-4** β **-ol (5). A solution of 3 (1.4 g) in CH₂Cl₂ (50 mL) was stirred and** treated with trifluoroperacetic acid (prepared by reacting 4.1 mL of $30\% \text{ H}₂O₂$ with 5.0 mL of trifluoroacetic anhydride in $20 \text{ mL of } CH_2Cl_2$ with cooling in icewater). The reaction mixture was stirred at room temperature for 0.5 h and diluted with water (70 mL). The organic layer was separated and evaporated under vacuum together with aluminum oxide. The solid was placed on a silica-gel column and chromatographed with elution by a hexane—ether mixture (10:1). Yield 0.14 g of starting steroid **3** and 1.2 g of epoxide **5**.

Yield 92%, mp 127-129 °C (hexane). IR spectrum cm^{-1}): 3520 (OH). ¹H NMR spectrum (δ , ppm): 0.63 (18-Me, s), 0.81 (26/27-Me, d, J = 8 Hz), 0.84 (29-Me, J = 7 Hz), 0.89 (21-Me, d, J = 7 Hz), 1.18 (19-Me, s), 3.20 (H-4 α , d, J = 1 Hz), 3.99 (H-3 α , dt, J₁ = 12 Hz, J₂ = 3 Hz). Mass spectrum (m/z) : 464, 466 (M⁺).

 3β -Chlorocholest-5-ene-7-one (6a). A solution of $2a(10.1 g)$ in acetic acid (200 mL) and CHCl₃ (20 mL) was stirred at 50°C and treated with CrO₃ (10.1 g) in acetic acid (50%, 20 mL). The reaction mixture was stirred at 50°C for 2.5 h, cooled to room temperature, diluted with water (200 mL), and extracted with ether (2×200 mL). The ether extract was treated with $CH₃OH$ (20 mL), washed with water (200 mL), and evaporated under vacuum. The solid was chromatographed on a silica-gel column with elution by hexane. Yield of **6a,** 3.78 g, 36%, mp 141-143 C. Found, %: C 77.13, H 10.05, Cl 8.59. Calc. for ^o C₂₇H₄₃ClO, %: C 77.38, H 10.34, Cl 8.46. IR spectrum (cm⁻¹): 1670 (C=O), 1635 (C=C). ¹H NMR spectrum (δ , ppm): 0.68 $(18-Me, s), 0.86 (26-Me, d, J = 6.6 Hz), 0.87 (27-Me, d, J = 6.6 Hz), 0.92 (21-Me, d, J = 6.6 Hz), 1.22 (19-Me, s), 3.84 (H-3\alpha, K)$ m, $W/2 = 24$ Hz), 5.68 (H-6, s).

 $(24R)$ -3 β **-Chlorostigmast-5-en-7-one (6b).** A solution of **2b** (7.0 g) in acetic acid (150 mL) and CHCl₃ (30 mL) was stirred at 50°C and treated with $C\text{rO}_3$ (7.0 g) in acetic acid (50%, 14 mL). The reaction mixture was stirred at 50°C for 1.5 h, cooled to room temperature, treated with CH₃OH (10 mL), diluted with water, and extracted with ether. The ether extract was washed with water and evaporated under vacuum. The solid was chromatographed on a silica-gel column with elution by a ether—hexane mixture (1:10). Yield of $6b$, 1.6 g, 22%, mp 144.5-146°C (hexane). IR spectrum (cm⁻¹): 1680 (C=O), 1640 (C=C). ¹H NMR spectrum (δ , ppm): 0.69 (18-Me, s), 0.82 (26-Me, d, J = 7 Hz), 0.84 (27-Me, d, J = 8 Hz), 0.85 (29-Me, t, $J = 8$ Hz), 0.93 (21-Me, d, $J = 7$ Hz), 1.23 (19-Me, s), 3.88 (H-3 α , m, W/2 = 22 Hz), 5.74 (H-6, br. s). Mass spectrum (m/z) : 446, 448 $(M⁺)$.

(24R)-3-Chlorostigmast-5-en-7-one oxime (7). A solution of **6b** (2.5 g) in pyridine (50 mL) was treated with hydroxylamine hydrochloride (2.4 g) and heated until it dissolved. After 66 h the solvent was evaporated under vacuum. The solid was chromatographed on a silica-gel column with elution by a ether—hexane mixture (1:10). Yield of **7,** 2.0 g, 78%, mp 141-143 °C (hexane), lit. [10] mp 145 °C. IR spectrum (cm⁻¹): 1645 (C=C–C=N–OH). ¹H NMR spectrum (δ , ppm): 0.70 (18-Me, s), 0.82 (26-Me, d, J = 7 Hz), 0.84 (27-Me, d, J = 8 Hz), 0.85 (29-Me, t, J = 8 Hz), 0.95 (21-Me, d, J = 7 Hz), 3.86 (H-3 α , m, $W/2 = 25$ Hz), 6.62 (H-6, s). Mass spectrum (m/z) : 461, 463 (M⁺).

REFERENCES

- 1. N. V. Kovganko, Zh. N. Kashkan, and E. V. Borisov, *Khim. Prir. Soedin.*, 751 (1999).
- 2. N. V. Kovganko, Zh. N. Kashkan, E. V. Borisov, and E. V. Batura, *Khim. Prir. Soedin.*, 757 (1999).
- 3. USSR Pat. No. 1110150, *Byull. Izobret.*, No. 43-44, 187 (1993); *Chem. Abstr.*, **123**, 228649n (1995).
- 4. USSR Pat. No. 1266167, *Byull. Izobret.*, No. 43-44, 187-188 (1993); *Chem. Abstr.*, **123**, 228643f (1995).
- 5. USSR Pat. No. 1309350, *Byull. Izobret.*, No. 43-44, 177 (1993); *Chem. Abstr.*, **123**, 278723c (1995).
- 6. S. L. Bykhavets, R. M. Zalatar, and A. I. Bykhavets, *Vestsi Akad. Navuk Belarusi, Ser. Biyal. Navuk*, 54 (1995).
- 7. J. W. Blunt and J. B. Stothers, *Org. Magn. Reson.*, **9**, 439 (1977).
- 8. A. A. Akhrem, F. A. Lakhvich, V. A. Khripach, and N. V. Kovganko, *Vestsi Akad. Navuk Belarusi, Ser. Khim. Navuk*, 65 (1983).
- 9. USSR Pat. No. 1536783, *Byull. Izobret.*, No. 43-44, 188; *Chem. Abstr.*, **123**, 228648m (1995).
- 10. M. S. Ahmad, I. A. Ansari, and G. Moinuddin, *Indian J. Chem.*, **203**, 602 (1981).